

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

API Security
Third Salt Security Special Edition

by Eric Schwake

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

API Security For Dummies®, Third Salt Security Special Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2025 by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights, including for text
and data mining, AI training, and similar technologies, are reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not
be used without written permission. Salt Security and the Salt Security logo are trademarks or
registered trademarks of Salt Security, Inc. All other trademarks are the property of their
respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD
BE AWARE THAT

ISBN 978-1-394-33840-5 (pbk); ISBN 978-1-394-33842-9 (ePub);
ISBN 978-1-394-33841-2 (ePDF)

Publisher’s Acknowledgments

Development Editor: Chad R. Sievers

Acquisitions Editor: Traci Martin

Editorial Manager: Rev Mengle

Client Account Manager:
Cynthia Tweed

Production Editor:
Umeshkumar Rajasekhar

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://Dummies.com

Introduction 1

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

Application programming interfaces (APIs) serve as the
building blocks of modern application architecture and
system design. They create the on-ramps to the digital

world, keep everyone connected, facilitate business, make digital
transformation possible, and continuously evolve modern com-
puting. In all your digital activities — across employee business
applications, ecommerce sites, health services, connected cars,
banking applications, home automation, and mobile apps —
you’re using APIs. The fact that APIs enable so much sharing of
data and services makes them prime targets for attackers. Security
practitioners must adapt for the world of APIs so they’re better
equipped to secure their organization’s applications and data.

About This Book
API Security For Dummies, Salt Security Custom Edition, describes
how application architecture has evolved, how APIs are the foun-
dation of modern design, how those API foundations are threat-
ened, and how the API building blocks can be secured. This book
is conveniently organized into five chapters that do the following:

»» Arrive at a working definition of modern APIs so you can dig
into the many facets of API security.

»» Describe how application architecture has evolved, how
cloud technologies have impacted designs, and how
DevOps practices accelerate API growth.

»» Detail API implementation and operational activities that
factor into security, including documentation, testing,
mediation, and integration.

»» Describe how attackers abuse the business logic of APIs
and automate attacks to increase likelihood of success or
do further damage.

»» Increase awareness around the Open Web Application
Security Project (OWASP) API Security Top 10 and the
common API security gaps it spotlights.

»» Highlight the technological capabilities you need to secure
APIs throughout their life cycles, including discovery,
governance, and protection.

2 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Present ten prioritized things you can do now to start
securing APIs for your organization.

Foolish Assumptions
Although this book is written primarily for technical readers with
some level of experience in modern computing, everyone can
benefit from the information. I make very few assumptions when
writing about the world of APIs and API security. I assume you’ve
browsed a website or used mobile application in recent years and
are inclined to dig deeper into some inner workings. Knowing
how your digital world functions and is built on the foundations
of APIs is interesting in its own right. And it’s also enlightening
as to how the digital world can be threatened by malicious actors.

Icons Used in This Book
Throughout this book, I use icons to call attention to important
information. Here’s what you can expect:

This icon indicates that the information is useful and can save
time for a given activity.

When you see this icon, make sure you read and understand the
surrounding text. The tidbit points out important information
that’s worth reiterating.

This icon alerts you to a potential issue or pitfall. I point out where
others have made mistakes in the hopes that it saves you time and
spares some heartburn.

Beyond the Book
I can cover only so much in this short book, particularly with a
complex topic. If you find yourself hungry for more knowledge on
API security, just go to https://salt.security.

https://salt.security/

CHAPTER 1 Understanding APIs 3

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

»» Taking a closer look at what APIs are

»» Recognizing how apps use APIs

Understanding APIs

If you’re looking for a primer and background on APIs, you’ve
landed on the right chapter. Here I arrive at a working defini-
tion of application programming interface (API), particularly as

it relates to the internet and web design. I cover some resulting
impacts of APIs to modern applications and cloud-native design.

Defining APIs
Understanding API consumer types and API protocols is key to
selecting the most effective security techniques and controls
available to you. Application programming interfaces (APIs) are
sometimes used as a synonym for functions or libraries refer-
enced regularly in code. For example, web APIs are a specific type
of API designed for use in web designs and communications. Web
API design patterns have existed for more than 20 years, emerging
from service-oriented architecture (SOA) and back-end services
powering applications via web protocols. The following sections
discuss in greater detail the types of APIs and how APIs work.

Eyeing the types of APIs
The term consumption refers to the API caller making a request to
an API to exercise functionality, query data, or manipulate data.

4 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The range of API types has evolved substantially over the years to
account for different business cases and usage models. Some of
the common API types include the following:

»» External: These APIs support mobilized workforces and
customers accessing services from anywhere. As the name
implies, they’re exposed to users outside a protected
network or the internet, often with relaxed network
restrictions. Authentication and authorization may or
may not be used.

»» Public: Public APIs are a type of external API designed for
consumption by users and machines across the internet.
They have relaxed access controls or are designed for
anonymous access to increase consumption.

»» Open: These APIs appear with open banking initiatives
including the financial industry. They help promote innova-
tion in a given industry, improve levels of service integration,
and provide freedom for customers to transact or access
data anywhere. Authentication and delegated authorization
are usually in place.

»» Internal: These APIs are usually deployed and operated
within a restricted network environment of a data center or
private cloud segment. They’re designed to be consumed by
other applications or users in that network. Authentication
and authorization may be in place but may be relaxed
because exposure is limited.

»» Partner: Organizations sometimes provide limited access
to internal APIs to select external suppliers to power and
expand their digital supply chains. The extent of access
control lies somewhere between that of internal and
external APIs.

»» Third-party: These APIs, often consumed as cloud-delivered
services, or software as a service (SaaS), help organizations
move faster without re-creating functionality or incurring
more technical debt.

»» Acquired: These are less of a design choice and more of a
type of inheritance. Organizations inherit these APIs as a
type of dependency as they acquire, integrate, and deploy
commercial and open-source software packages.

CHAPTER 1 Understanding APIs 5

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Identifying API protocols
API protocols are the rules and specifications that govern how
applications communicate with each other. They impact the
design, testing, and security of your APIs. Two of the most
common protocols are REST and GraphQL:

»» REST (Representational State Transfer): REST is a widely
used architectural style that emphasizes a clear separation
between clients and servers. It relies on standard HTTP
methods (GET, POST, PUT, DELETE) to interact with
resources. RESTful APIs are known for their flexibility and
scalability, making them suitable for various applications.

»» GraphQL: GraphQL is a query language that allows clients to
request specific data they need, reducing over-fetching and
improving efficiency. It’s particularly well-suited for complex
applications with evolving data requirements.

While REST and GraphQL dominate the API landscape, you
might also encounter older protocols like RPC (Remote
Procedure Call) and SOAP (Simple Object Access Protocol).
These protocols are less common in modern web develop-
ment but may still exist in legacy systems.

Designing Modern Applications
APIs have significantly changed the way that development teams
create applications. Whether your organization is building,
acquiring, or integrating APIs, the impact to front-end design,
business functionality, and data exchange is significant. APIs
are also prominent within microservices architecture (MSA) and
cloud-native design patterns. Continue reading the following
sections for more details.

Decoupling front and back ends
Contemporary applications typically distinguish their front-end
interfaces (visible to users) from their back-end services (the
underlying logic). This separation enhances flexibility and main-
tainability. APIs are vital for linking these two elements.

6 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Front-end code may be a script executed in a web browser or a
native mobile application. Although securing front-end code is
crucial, organizations possess limited authority over user devices,
particularly regarding customer-facing applications.

Altering the API picture
Cloud-native has a few meanings depending on what IT circle
you sit in. The broadest definition is that a design or architecture
exhibits cloud traits and uses technologies that power cloud ser-
vice providers. Common cloud traits include web-scale capacity
and elasticity.

The following technologies enable cloud computing:

» Virtualization: Virtualization abstracts hardware from the
operating system using a hypervisor. You can run many
virtual machines on a given physical host, often described
in terms of density. By packing more virtual machines on a
given host, you can make better use of the hardware and
ensure it doesn’t sit idle. Virtual machines are used readily
to power applications and services, but virtual machines
must be lightweight and highly performant if they’re to
service MSAs.

» Containerization: Containerization involves packaging
applications and their dependencies into containers to
further increase density by abstracting the operating system
from applications and services. Containers improve portabil-
ity and environment consistency. Containers are often used
as the unit of compute to power microservices within MSA.

Two most common ways that cloud-native maps to APIs are

» Organizations pair containerization and virtualization to
limit the blast radius in the event of compromised API code,
container runtimes, or hypervisors.

» Entire infrastructures can be declared and operated via APIs,
for example, with container platforms like Kubernetes and
cloud service providers.

CHAPTER 2 Laying the Foundations for API Security 7

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

»» Identifying problems with API
documentation and analysis

»» Understanding API security
testing methods

»» Mediating APIs to improve
observability and enforce policies

Laying the Foundations
for API Security

Traditional approaches to securing APIs are numerous,
including testing and mediation. This chapter examines
these approaches in greater detail.

Documenting APIs
API documentation serves a range of security and nonsecurity
purposes throughout the API life cycle. Documentation gives your
organization a couple of primary advantages:

» It provides details on how to communicate with APIs, the
functionality they provide, and the data they exchange so
you can better understand your API attack surface.

» It serves as input into other activities, including design
reviews, security testing, operations, and protection.

Like all forms of documentation, teams inevitably neglect to
document APIs or new functionality as they iterate. This reality
leads to a type of environment drift, also referred to as API drift, that
leaves massive gaps in your API inventory and security posture.

8 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Document APIs that you build and use that data to feed an API
inventory or catalog. Include third-party APIs where adequate
documentation is provided by the supplier. Mitigate gaps in your
API inventory by continuously scanning environments and ana-
lyzing traffic to discover new API endpoints and functions.

The following sections touch on a couple more points your orga-
nization needs to remember as it documents its APIs.

Steering clear of traditional
documentation approaches
Avoid approaching API documentation as a traditional documen-
tation exercise with the goal of producing lengthy text documents
or visual diagrams as artifacts. Written documents, slides, or
visual diagrams are sometimes required for compliance or as part
of design reviews.

Some organizations tend to carry over security from traditional
compliance and waterfall approaches. However, many IT orga-
nizations start to feel increased pressure as development teams
adopt agile methodologies and DevOps practices that often come
as part of a package deal with API development.

Traditional documentation can be useful for secure design reviews
and threat modeling. However, traditional forms of documenta-
tion are notoriously difficult to generate and maintain. API drift
can be worse in these cases, and API documentation likely won’t
reflect the reality of your production deployment, even with extra
staffing allocated to documenting all changes.

Working with API schema definitions
The API schema definition formats are designed to make your
life easier. Schema can be defined and documented during API
creation. The schema definitions are also reusable for testing,
integration, publishing, and operations. Many design, mocking,
and development tools can autogenerate API schema definitions
as you integrate or code an API.

You can use these features to reduce documentation workload
and avoid headaches later. Open-source software packages that
include web APIs also commonly include the relevant API schema
definitions in the corresponding code repository (such as git) or
package manager (such as npm) you obtain them from.

CHAPTER 2 Laying the Foundations for API Security 9

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Most commonly for REST APIs, these machine formats include
Swagger or OpenAPI specification (OAS). Depending on your API
design, development, or publishing tooling, other formats like
RAML or API Blueprint may be present. And if you’re exploring
GraphQL APIs, then also expect to work with GraphQL schema
definitions.

Testing APIs
A specific focus within shift-left API security practices is securing
the build pipeline, which requires that teams get security tooling
plugged into continuous integration/continuous delivery (CI/CD)
build pipelines and git-based developer workflows. Securing build
pipelines requires a range of security-testing tools, including
dependency analyzers, static analyzers, dynamic analyzers,
schema validators, fuzzers, and vulnerability scanners. The type
of security tooling that is needed varies based on what artifacts
are moving through the pipeline, what must be built, and where
it must be delivered.

The following sections examine the advantages and disadvan-
tages of security testing within build pipelines.

Utilizing application security
testing tools
Static application security testing (SAST) can be used to analyze orig-
inal source code for potential weaknesses and vulnerabilities. It’s
often run when code is committed to version control or during
build stages. Meanwhile, dynamic application security testing (DAST)
can be used to analyze a running application for exploitable con-
ditions. It’s often initiated prior to production delivery or used in
production continuously because the application must be running
on infrastructure.

SAST and DAST can uncover weaknesses and exploitable condi-
tions in your custom API code. However, these scanning methods
can’t uncover business logic flaws that attackers target and abuse.
Business logic — and how you design and code APIs — is unique
to your organization. As a result, the code that represents your
business logic rarely follows well-defined patterns where SAST or
DAST signatures can be built accordingly.

10 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Most tools don’t go deep into testing authentication or authori-
zation beyond cursory checks, such as detecting weak forms of
authentication like basic and digest access or the testing tool may
only analyze how credentials are input, passed, or stored. Some
DAST tools can check for privilege escalation weaknesses, but
doing so requires multiple runs of the tool against a given app
and its API. Unfortunately, many organizations push tight release
windows and time is at a premium.

DAST tools are notorious for running for extended periods for
complex applications. Budget time accordingly for build pipeline
scans to complete or make scans nonblocking so as not to hold
up releases.

SAST and DAST have always had their shortcomings. The prob-
lem is worsened in the world of APIs. Yes, you should run them
against your custom application and API code but acknowledge
that these scanners aren’t designed to detect all types of issues.
The importance of behavior analysis in runtime for APIs can’t be
stressed enough (refer to Chapter 5 for more details).

Using API schema validators
A form of static analysis, API schema validators are often pitched
as the DevOps-friendly solution for build pipeline security. The
pitch often goes like this: “Give us your schema definitions; we
can scan your APIs, make sure they’re conformant, and check for
vulnerabilities.”

However, you should be aware of a few issues that exist with the
schema validation approach:

»» Not everything needs to be defined in API schema. API
specification formats like OAS and Swagger don’t require
you to define all fields or functions in the API documentation.
Developers commonly forget to document something fully,
particularly if they aren’t working within API design tools
like Postman.

»» Many organizations are lackluster at documenting.
Humans are notoriously bad at documenting, especially
documenting everything fully. A lack of documentation isn’t
a problem specific to developers. OAS can help in that it’s
self-documenting, but it still requires manual effort. Some

CHAPTER 2 Laying the Foundations for API Security 11

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

tooling may also be better at generating the OAS definition
than others.

»» API drift happens as a matter of course. Deviations from
the original specification and what is running in production
are common. API drift parallels one of the biggest problems
that organizations run into with secure design review and
threat modeling processes. Sometimes, what you intend
to build ends up looking much different than the real-
world product.

Any AST or schema analysis tooling you select should be inte-
grated and automated to serve the pipeline. Tools should work
within established git workflow and CI/CD processes. Scanning
manually, finding issues, and spitting out a report aren’t enough.
Such an approach won’t work for agile methodologies or DevOps
practices that most organizations are embracing.

Schema validation and enforcement is the old paradigm of posi-
tive security in new clothes. Instead of security teams having to
create rules or signatures, the burden is shifted to development
teams. Schema validation can only identify some exploitable con-
ditions and misconfigurations. Schema analysis can’t identify
business logic flaws.

Mediating 101: APIs and the
Relevant Mechanisms

Although it’s possible to directly expose an API via a web or appli-
cation server, this practice is less common in typical enterprise
architectures. API mediation can be achieved through several
other mechanisms, including network load balancers, application
delivery controllers, Kubernetes ingress controllers, sidecar prox-
ies, and service mesh ingresses.

Understanding that you can mediate and observe API traffic at
multiple points in an enterprise architecture is what you need to
know here. Having a basic idea of the various mediation points
is critical to API security so you’re seeing all traffic, are able to
enforce as appropriate, and remediate quickly. The actual selec-
tion of a particular mediation mechanism or the point in an archi-
tecture where you’d elect to proxy API traffic is beyond the scope
of this book.

12 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These sections examine in plain English what you need to know
about mediation and APIs.

Functioning as API mediation points
In most enterprise architectures, you’ll find a mix of proxying
mechanisms that mediate API requests and responses:

»» Network load balancers (NLB): NLBs may be physical
hardware or software-defined, and they’re responsible for
routing requests dynamically between servers and services
to balance network load.

»» Application delivery controllers (ADC): ADCs are like their
NLB counterparts, though they typically include more
functionality focused on application-specific routing,
load-balancing, and caching. In some cases, ADC and NLB
are interchangeable and can just be a matter of ven-
dor language.

»» API gateways: API gateways are designed specifically for
mediating API traffic. They can also help with message
translation and bridging between different protocols for
inner and outer architecture.

»» API management (APIM): APIM suites provide full life cycle
capabilities on top of API gateways alone. They typically
enable an organization to unify policies across gateways and
API endpoints, provide rolled-up monitoring, and enable
developer or partner self-service. APIM still relies on API
gateways as a mediating proxy mechanism to enable their
functionality and enforce policies.

If an organization is rapidly embracing microservices architecture
(MSA), more than likely the organization has ingress controllers
for Kubernetes and service meshes. Such ingresses are a mashup
of API gateways and NLBs, and they may support multiple pro-
tocols depending on the design of the microservices. Proxies
may also be deployed locally to a given workload that powers a
microservice or API. Such proxies are typically referred to as side-
car proxies. Sidecar proxies function as a type of loopback proxy,
where all traffic flowing into or out of a workload must go through
the sidecar proxy.

CHAPTER 2 Laying the Foundations for API Security 13

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Enforcing policy with API management
APIM offerings usually provide a set of capabilities to satisfy some
use cases. Those capabilities commonly include the following:

»» Network security: Like NLBs or ADCs, network connectivity
can be restricted to APIs in an API gateway. Commonly, this
includes IP address allow and deny lists to restrict which
origin IP addresses can communicate to a given API, rate
limits to restrict how frequently requests can be made, and
transport encryption with transport layer security (TLS) to
provide confidentiality and integrity of messages in transit.

»» Authentication and authorization: Organizations often
enforce access control at API gateways so that API calls are
authenticated and authorized. Common protocols include
OIDC for authentication and OAuth2 for authorization.
Token translation is usually offered as well, such as where an
API implementation requires integration with older protocols
like security assertion markup language (SAML).

»» Basic threat protection: By design, the mediation mecha-
nisms already offer message filtering and protocol transla-
tion. Many APIM offerings provide basic rules to block
malicious character sets commonly used in injection attacks.
The other threat protection capability includes restricting
incoming API requests based on API schema definitions
or manual configuration. Restrictions can be placed on
parameter lengths, parameter values, array sizes, and more.

Enable APIM security controls when possible if doing so doesn’t
break API integrations with other systems. These settings can
mitigate some types of API attacks, but they won’t protect you
from most forms of API abuse and business logic attacks.

CHAPTER 3 Governing Your API Posture 15

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

»» Identifying essential elements of API
posture governance

»» Considering best practices

»» Exploring what API gateways and
mediation tools can do

Governing Your
API Posture

API posture governance ensures your APIs are secure, reli-
able, and compliant throughout their lifecycle. It’s about
visibility into your API landscape, understanding the risks,

and implementing controls to mitigate them. APIs are the back-
bone of modern applications, connecting systems and enabling
data exchange. But with increased connectivity comes increased
risk. As this chapter discusses, API posture governance is essen-
tial for protecting your organization from API-related risks.

Recognizing Key Components
API posture governance encompasses several key components,
each crucial for maintaining a robust API security program:

»» Visibility: You need a clear picture of your API landscape.
It includes knowing what APIs you have, where they are, and
what they do. Visibility can be achieved through maintaining
an up-to-date API inventory and employing continuous
discovery mechanisms to identify new APIs as they’re
introduced.

16 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Risk assessment: Understanding the risks associated with
your APIs is paramount. This involves regular security testing,
vulnerability scanning, and risk analysis to identify potential
vulnerabilities and threats. The OWASP API Security Top 10 (refer
to Chapter 4) provides a valuable framework for categorizing
and understanding common API vulnerabilities.

»» Controls and policies: Establishing and enforcing security
policies and controls is the cornerstone of API posture
governance. This includes implementing strong authentica-
tion and authorization mechanisms, rate limiting to prevent
abuse, and input validation to mitigate injection attacks. API
gateways and other mediation tools can be crucial in
enforcing these controls.

»» Monitoring and response: Continuous monitoring of your
APIs for suspicious activity is vital for detecting and responding
to attacks in real-time. An incident response plan ensures that
your organization can address security incidents, minimizing
damage and downtime.

»» Compliance: Regulatory compliance is a critical aspect of API
posture governance. Ensure that your APIs comply with relevant
regulations and standards, such as GDPR, HIPAA, and PCI DSS,
which includes protecting sensitive data, ensuring secure storage
and transmission, and adhering to industry best practices.

Identifying Best Practices
In addition to the key components, consider these best practices
for effective API posture governance:

»» Establish a dedicated API governance team. Define clear
roles and responsibilities for API security. This team should
include development, operations, and security team
representatives to ensure a holistic approach.

»» Implement a comprehensive API security strategy. Your
strategy should cover the entire API lifecycle, from design
and development to deployment and retirement. Ensure it
addresses security testing, vulnerability management, threat
protection, and incident response.

»» Embrace automation. Leverage automation to streamline API
governance tasks, including automating API discovery, security

CHAPTER 3 Governing Your API Posture 17

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

testing, and incident response. Automation reduces manual
effort, improves efficiency, and enhances your security posture.

»» Regularly review and update your API governance
framework. The threat landscape constantly evolves, and
your API governance framework should adapt accordingly.
Periodically review and update your policies, controls, and
processes to address new threats and business requirements.

Noting the Role of API Gateways
and Mediation Tools

API gateways and other mediation tools are essential for enforc-
ing API posture governance policies. They act as central points of
control for API traffic, enabling you to implement security mea-
sures such as:

»» Authentication and authorization: Verify the identity of API
consumers and ensure that they have the necessary permis-
sions to access API resources.

»» Rate limiting: Prevent abuse and protect your backend systems
from overload by controlling the rate of API requests.

»» Input validation: Sanitize API inputs to mitigate injection attacks
and other malicious attempts to compromise your systems.

»» Threat protection: Detect and block malicious traffic based
on known attack patterns and suspicious behavior.

Considering Other Key Points
API posture governance isn’t a one-time activity but an ongo-
ing process that requires continuous attention and improvement.
Consider the following points to ensure your API posture gover-
nance is complete:

»» API discovery and inventory management: Maintaining
an accurate and up-to-date API inventory is fundamental to
API posture governance. API discovery tools can help you
identify and catalog all your APIs, including those that may

18 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

be undocumented or forgotten (referred to as shadow APIs).
This inventory provides a foundation for risk assessment,
security testing, and incident response.

»» Continuous monitoring and anomaly detection:
Continuous monitoring of API activity is crucial for detecting
suspicious behavior and potential attacks. Anomaly detec-
tion tools can help you identify deviations from normal API
usage patterns, alerting you to potential threats in real-time.
This approach enables you to respond quickly and minimize
the impact of security incidents.

»» Misconfigurations and API posture governance:
Misconfigurations often lead to API vulnerabilities. These can
manifest as errors in authentication settings, authorization
policies, or input validation rules. Effective API posture gover-
nance is vital for identifying and addressing these misconfigura-
tions. By continuously monitoring your API environment and
performing regular security assessments, you can detect and
remediate misconfigurations before attackers can exploit them.

»» Data exposure and API posture governance: Data
exposure poses a significant risk associated with APIs, as
they often provide access to sensitive information, including
personally identifiable information (PII) and financial records.
To mitigate this risk, implementing effective API posture
governance is essential.

One common vulnerability in APIs is excessive data exposure,
which occurs when APIs return more data than necessary for a
client application to function properly. This issue can arise from
improper API configuration failing to filter data correctly or if the
client application doesn’t specify the required fields.

To prevent excessive data exposure, API posture governance
should ensure that APIs are configured to return only the
necessary data for the client application. This can be accom-
plished through various techniques, including data filtering, data
masking, and encryption. By employing these methods, you can
protect sensitive information from unauthorized access.

»» Collaboration and communication: Effective API posture
governance requires collaboration and communication across
different teams within your organization. Development teams
need to be aware of security best practices, while security teams
need to understand the business requirements for APIs. Regular
communication and knowledge sharing are essential for
maintaining a robust API security program.

CHAPTER 4 Getting the Lowdown on API Attacks 19

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

»» Differentiating between API attacks
and application attacks

»» Looking at the OWASP API Security
Top 10

»» Identifying patterns of automated
attacks

Getting the Lowdown
on API Attacks

This chapter clarifies in plain English how API attacks differ
from application attacks. You also can read more about the
OWASP API Security Top 10, which is a good starting point

for understanding common API flaws. Furthermore. this chapter
covers automated attack patterns like brute forcing, credential
stuffing, and scraping that almost always target APIs specifically.

Understanding How API Attacks
Differ from Application Attacks

API attack patterns vary from what practitioners are used to
within the network security and application security domains.
Attacks may borrow from both domains, or more commonly,
they’re unique to API use cases and business logic specifically.

Attackers exploit misconfigurations in infrastructure controls,
vulnerabilities in code, or some combination of the two. Leaving
security to a development team was already a poor strategy, and
some shift-left approaches and misguided DevOps practices
have pushed responsibility too heavily onto development teams.

20 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Developers may lack expertise in infrastructure and security
concepts, which inevitably results in gaps in API security.

Attackers use your front-end applications to connect to your
back-end APIs and to help decipher your business logic. Attackers
also relish the fact that modern applications are highly intercon-
nected with many first-party and third-party APIs, any one of
which might be exploitable.

The front-end application is only
a means to an end
Security teams sometimes attempt to secure APIs by protecting
endpoints or hardening client applications. For some API con-
sumption scenarios, you simply can’t secure the endpoint or trust
that client code won’t be tampered with. This reality hits espe-
cially hard for deployments where customers call external APIs,
public APIs, and open APIs from unsecured networks such as
the Internet.

Attackers regularly reverse-engineer client-side code or front-
end code with tools that unpack, decompile, or disassemble appli-
cation binaries. Attackers also make use of intercepting proxy
tools such as Burp Suite or OWASP Zed Attack Proxy. These are
the same proxying tools in use for general application trouble-
shooting and security assessment work. In the hands of a trained
professional as well as an attacker, the tools are incredibly pow-
erful. Be extra careful; always presume an endpoint is compro-
mised along with the client-side code that runs on it. Back-end
services (APIs) and the data they provide are the most valuable
targets to attackers.

APIs underpin digital supply chains
Your organization’s API ecosystem is more than just the APIs it
builds. API integrations and API dependencies in acquired appli-
cations or online services round out any organization’s portfolio.
Collectively, all of these APIs form an expansive digital supply
chain and increase the attack surface for organizations. The mix-
ture of first-party and third-party APIs and infrastructure com-
plicates what security controls are available to you, let alone what
code may be visible.

CHAPTER 4 Getting the Lowdown on API Attacks 21

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Attackers know this reality of distributed architectures and sup-
plier integrations, and they often target the weakest link. In fact,
attackers commonly exploit a weakness in an API as an initial
attack vector and then pivot to other networks, servers, work-
loads, applications, and APIs. These multistep attack sequences
often evade traditional security controls. The realities of API eco-
systems further emphasize the need for runtime behavior analy-
sis to detect novel exploits. Chapter 5 dives deeper into behavior
analysis and runtime protection.

Taking a Closer Look at the
OWASP API Security Top 10

Over the years, the Open Web Application Security Project (OWASP)
has become increasingly popular, and its Application Security
Top 10 is frequently referenced in the security industry. In 2023,
OWASP updated and released the revised API Security Top 10,
which identifies the ten most common flaws found in APIs. This
list should be your initial reference point for gaining insights into
the common weaknesses and vulnerabilities observed in APIs.
Additionally, it serves as a valuable resource for training and rais-
ing awareness while also providing a lightweight framework for
categorizing issues encountered in APIs.

The sphere of concern over APIs shouldn’t begin and end with
the OWASP API Security Top 10. Attackers chain together exploits
of flaws described in the OWASP API Security Top 10. They also
employ automation to increase their chances of success and cause
greater damage. For example, excessive data exposure and broken
authentication leave an API susceptible to automated attacks such
as enumeration and scraping. APIs designed in such a way are
sometimes referred to as leaky APIs.

These sections discuss the OWASP API Security Top 10 sequen-
tially because there’s no easy way to group the flaws. Some entries
like authentication, authorization, and injection flaws can seem
redundant to the OWASP Application Security Top 10, but API
context adds uniqueness. Other entries like improper assets man-
agement or insufficient logging and monitoring are fundamental
to all systems engineering work. However, the problems become
more pronounced with APIs because of rapid development cycles,
undocumented API changes, and ongoing integration work.

22 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

API1:2023 Broken object level
authorization
Object level authorization is an access control mechanism used to
validate an API caller’s ability to access a given object. Even if
an application implements proper authorization checks in infra-
structure, developers often forget to apply these checks before
allowing access.

Attackers easily exploit API endpoints that are vulnerable to
broken object level authorization (BOLA) by manipulating the ID of
an object that is sent within an API request. These vulnerabili-
ties are extremely common in API-based applications because
the server component often doesn’t fully track the client’s state.
Instead, the server component relies on parameters like object IDs
sent from the client to decide which objects can be accessed.

Every API endpoint that receives an ID of an object and performs
any type of action on the object should implement object level
authorization checks. These checks should be made continuously
throughout a given session to validate that the authenticated user
has access to perform the requested action on a requested object.

Failure to enforce authorization at the object level can lead to
data exfiltration as well as unauthorized viewing, modification,
or destruction of data. BOLA can also lead to full account takeover;
for example, attackers can compromise a password reset flow and
reset credentials of an account for which they aren’t authorized.

API2:2023 Broken authentication
Authentication mechanisms are easy targets for attackers, par-
ticularly if the authentication mechanisms are fully exposed or
public. Prompting users or machines for authentication material
may also not be possible in some API use cases. These two points
make the authentication component potentially vulnerable to
many exploits.

Broken authentication in APIs originates from the following:

»» Lack of protection mechanisms: The API endpoint lacks an
authentication mechanism. This is a common occurrence
within internal networks or middleware.

CHAPTER 4 Getting the Lowdown on API Attacks 23

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Improper or misconfigured authentication: The mecha-
nism is used or implemented without considering the attack
vectors, or the mechanism isn’t appropriate for the use case.
For example, an authentication mechanism designed for
Internet of Things devices typically isn’t the right choice for
a web application like an ecommerce site.

This OWASP entry is a catch-all for all types of authentication
issues including weak password complexity, inadequate account
lockout thresholds, authentication material exposed in URLs,
authentication tokens with insufficient entropy, use of API
keys as the only authentication material, and lack of two-factor
authentication (2FA).

Attackers who are able to exploit vulnerabilities in authentication
mechanisms successfully can take over user accounts, gain unau-
thorized access to data, make unauthorized transactions as other
users, and abuse implicitly trusted connections to pivot attacks to
other systems.

API3:2023 Broken object property
level authorization
Teams sometimes design applications such that back-end APIs
provide all the data that might be necessary for a given func-
tion and then depend on client-side code to filter appropriately.
Because APIs can be used as a means of data exchange for many
types of API consumers, back-end engineers may implement APIs
in a generic way without thinking about the sensitivity or privacy
of data. Traditional security scanning and runtime detection tools
can’t differentiate between legitimate data returned from the API
and sensitive data that shouldn’t be returned. This level of analy-
sis requires a deep understanding of the application design and
API context.

The weaknesses of excessive data exposure and mass assignment
can be easily exploited. Here’s how it happens: Attackers moni-
tor the API traffic coming from a user interface, which can be
an application on a device like a laptop or smartphone. They use
the same types of tools that security experts use to intercept and
view the data exchanged between the front-end (the user-facing
application) and the back-end APIs (servers). After the attackers
have access to this traffic, they scrutinize the API responses for
data that the application receives but doesn’t show to the user.

24 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

They also look for vulnerable API endpoints — these are points in
the server that process requests — that allow a user to modify or
delete sensitive data they shouldn’t have access to.

API4:2023 Unrestricted resource
consumption
API requests consume back-end resources such as network,
CPU, memory, and storage. APIs don’t always impose restric-
tions on the size or number of resources that can be requested by
the client or user. Lack of rate and resource limiting doesn’t just
potentially impact performance of back-end compute though.
Lack of limiting also opens the door to many types of attacks,
including Denial of Service (DoS), brute-forcing, enumeration,
and credential stuffing.

Here is a closer look at how attackers exploit APIs that lack limits:

»» Lack of resource limit: Attackers exploit lack of resource
limiting by crafting a single API call that can overwhelm an
application, impacting the application’s performance and
responsiveness or causing it to become unresponsive. This
type of attack is sometimes referred to as an application-level
DoS. Lack of resource limits may leave the system, applica-
tion, or API susceptible to authentication attacks and data
exfiltration attacks.

»» Lack of rate limit: Attackers exploit the lack of rate limiting
by crafting and submitting high volumes of API requests to
overwhelm system resources, brute force login credentials,
quickly enumerate through large data sets, or exfiltrate large
amounts of data.

API5:2023 Broken function
level authorization
Broken function level authorization (BFLA) shares some similarities
to BOLA, though the target with BFLA is API functions as opposed
to objects that APIs interact, with as in the case of BOLA. Attack-
ers attempt to exploit both BOLA and BFLA when targeting APIs in
order to escalate privileges horizontally or vertically.

CHAPTER 4 Getting the Lowdown on API Attacks 25

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Attackers discover BFLA flaws because API calls are structured and
predictable. Finding vulnerable API endpoints is possible in the
absence of API documentation or schema definitions by reverse
engineering client-side code and intercepting application traffic.
Some API endpoints might also be exposed to regular, nonprivi-
leged users making BFLA flaws easier for attackers to discover.

Attackers exploit BFLA flaws by sending legitimate API requests
to an API endpoint that they shouldn’t have access to, or by inter-
cepting and manipulating API requests originating from client
applications. For example, attackers may change an HTTP method
from GET to PUT. Alternatively, attackers may also alter a query
parameter or message body variable such as changing the string
“users” to “admins.” Attackers exploit BFLA flaws to gain access
to unauthorized resources, take over other accounts, modify
accounts, or escalate privileges.

API6:2023 Unrestricted access
to sensitive business flows
Unrestricted access to sensitive business flows is a type of API
security vulnerability that occurs when an API doesn’t properly
restrict access to sensitive business flows. This weakness can
allow attackers to abuse the business model behind the appli-
cation to perform malicious actions, such as exfiltrating data,
manipulating market or price data, or gaining an unfair advan-
tage in competitive systems.

Attackers typically exploit this vulnerability by automating the use
of the API. For example, an attacker writes a script that repeatedly
sends requests to an API endpoint to purchase all the available
items of a newly released product or to scrape real-estate price
information over time. This script can allow attackers to achieve
their malicious intent much faster than a human user could.

An attacker can bulk purchase all items of a newly released prod-
uct online and then resell them at a higher price. An attacker can
scrape real-estate price information over time to predict house
price trends in an area and then use this information to make
profitable investments. An attacker performs actions faster than
a human user on auction sites or similar competitive systems,
gaining an unfair advantage.

26 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

If this vulnerability isn’t mitigated, attackers can exploit it to cause
significant damage to your organization. They could exfiltrate
sensitive data, such as customer records, financial information,
or intellectual property, manipulate market or price data, which
could lead to financial losses for your organization or its custom-
ers, or gain an unfair advantage in competitive systems, which
can damage your reputation and profitability.

API7:2023 Server-side request forgery
Server-side request forgery (SSRF) is a vulnerability where an API
fetches a remote resource using a URL provided by the user with-
out proper validation. This flaw can allow an attacker to manipu-
late the application into sending requests to a server under their
control, bypassing firewalls or VPNs.

SSRF exploits an API’s feature that lets users determine which
external resources it should access, such as image preview links.
An attacker submits a malicious URL that causes the API to inad-
vertently connect to a server setup to intercept data or inject
harmful content.

Attackers leveraging SSRF can steal sensitive data, overload the
API server with requests, or access restricted internal resources.
To prevent such attacks, organizations should validate user-
supplied URLs against a whitelist, employ sandboxing to isolate
API requests, and monitor API traffic for anomalies. Additionally,
regular security scans, patching, and developer education on SSRF
are crucial for robust API security.

API8:2023 Security misconfigurations
Security misconfigurations include insecure default configu-
rations, incomplete configurations, open cloud storage, mis-
configured HTTP headers, unnecessary HTTP methods, overly
permissive cross-origin resource sharing (CORS) policies, and
verbose error messages.

Attackers exploit security misconfigurations to gain knowledge
of the application and API components during reconnaissance
phases, passively or stealthily gathering information about a tar-
get or victim. Detailed errors, such as stack trace errors can expose
sensitive user data and system details that aid attackers in find-
ing exploitable technology, including outdated or misconfigured

CHAPTER 4 Getting the Lowdown on API Attacks 27

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

web and application servers, during their reconnaissance phase.
Attackers also exploit misconfigurations to pivot their attacks,
such as bypassing authentication due to misconfigured access
control mechanisms.

Automated security scanners are available to detect common
misconfigurations like unnecessary or legacy services. Where
you detect these issues in a given technology stack varies greatly
though. Vulnerability scanners may only scan a running server for
known vulnerabilities and misconfigurations in published soft-
ware, usually in the form of common vulnerabilites and expo-
sures IDs (CVE IDs). However, this type of detection doesn’t
provide a complete picture because misconfigurations can exist in
underlying code, in third-party dependencies, or in other system
integrations.

Organizations often employ a barrage of security scanners in
build pipelines to try to catch as many issues as possible prior
to production deployment. Cases where security misconfiguration
is the result of something simple like a missing patch are often
minimal. Most misconfigurations that lead to exploitable APIs are
far stealthier and obscured by complex architectures.

API9:2023 Improper inventory
management
Maintaining a complete, accurate API inventory is critical to
understanding potential exposure and risk. An outdated or
incomplete inventory results in unknown gaps in the API attack
surface and makes identifying older versions of APIs that should
be decommissioned more difficult. Similarly, inaccurate API doc-
umentation results in risks like unknown exposure of sensitive
data and makes identifying vulnerabilities that need to be reme-
diated difficult.

Unknown APIs, referred to as shadow APIs, and forgotten APIs,
referred to as zombie APIs, typically aren’t monitored or pro-
tected by security tools. Known API endpoints may also have
unknown or undocumented functionality, which are referred
to as shadow parameters. As a result, these APIs and the infra-
structures that serve them are often unpatched and vulnerable
to attacks. Attackers may gain unauthorized access to sensitive
data, or even gain full server access through old, unpatched, or
vulnerable versions of APIs.

28 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

API10:2023 Insufficient
logging and monitoring
Insufficient logging and monitoring of APIs enables attackers to
perform reconnaissance, abuse business logic, compromise sys-
tems, maintain persistence, and move laterally across environ-
ments without being detected. The longer attackers dwell or are
present in an environment, the higher the likelihood the attack
will result in a breach, brand or reputation damage, or some other
negative impact.

Without visibility over ongoing malicious activities, attackers
have ample time to perform reconnaissance, pivot to other sys-
tems, and tamper with, extract, or destroy data.

Recognizing Automated Attack Patterns
Attackers frequently create or use custom code, python scripts,
command line scripts, pre-built bots, and intercepting proxies to
perpetuate and automate API attacks. New attack patterns emerge
as attackers abuse the unique business logic that organizations
build into their APIs. These sections cover two automated attack
patterns that all industries face: credential stuffing and scraping.

Brute forcing, credential stuffing,
and account takeover, oh my!
Brute force attacks are where attackers enumerate through alpha-
numeric sequences to find working username and password com-
binations that provide authenticated context. Brute force attacks
often combine each username in a one (username)-to-many
(password) attack. Attackers may also attempt to brute force
usernames, depending on how much data they’re starting with.

Credential stuffing relies on lists of compromised username/
password combinations and the common bad habit of users
implementing the same credentials across multiple services.

Where brute forcing and credential stuffing converge is the end
goal of account takeover (ATO). ATO is when attackers have obtained
working credentials that provide them authenticated context in
a system and its APIs. Once authenticated, attackers have access
to sensitive data or functionality and may try to further escalate
privileges.

CHAPTER 4 Getting the Lowdown on API Attacks 29

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Credential stuffing and brute force attacks can be mitigated by
implementing policies that lock an account after multiple login
attempts. However, setting aggressive lockout thresholds can
impact user experience. As a compromise, organizations some-
times implement a lax lockout policy, such as locking an account
after ten consecutive, failed login attempts within an hour. The
failed attempt counter resets after 60 minutes.

However, attackers take advantage of these relaxed thresholds
by backing off their login requests and pausing attempts until
thresholds and counters reset. This attack technique is another
example of why runtime behavior analysis is necessary to detect
and prevent API abuse.

The plague of scraping
Public APIs carry inherent risk because the design leans toward
allowing anonymous access, and traditional access control mech-
anisms are a luxury. It’s not possible to enforce strong authenti-
cation and authorization without registering users or employing
additional authentication factors such as 2FA. Such an approach
can negatively impact user experience and service adoption.

Attackers take advantage of these exposed APIs with relaxed
access controls. APIs may also expose too much data or lack rate
limits, which are two common flaws described in the OWASP API
Security Top 10 (refer to the section “Taking a Closer Look at the
OWASP API Security Top 10,” earlier in this chapter). When these
design flaws all apply to a given API endpoint, you end up with a
leaky API that may inadvertently expose sensitive or private data.
It’s trivial for attackers to enumerate API endpoints and scrape
data en masse using even basic scripts.

STOPPING CREDENTIAL
STUFFING ATTACKS
Finastra, a leading FinTech platform provider, frequently defends
against credential stuffing attacks, with hackers automating account
ID info in an effort to succeed at account takeover. The Finastra team
has deployed API security from Salt Security to automatically detect
and block these attacks, which otherwise easily pass through the
company’s web action firewalls (WAFs) and API gateways.

30 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Attackers collect data at scale and in large volumes by utilizing
the same data analytics tools that practitioners use to aggregate
and correlate data to extract meaningful patterns. Depending on
the information within the collected dataset, attackers may use
scraped data to perpetuate fraud, social engineer individuals,
target users with phishing attacks, or brute force accounts.

CHAPTER 5 Securing APIs 31

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

»» Acknowledging the importance of
architecture

»» Continuously discovering APIs

»» Protecting APIs in runtime

»» Remediating APIs

»» Examining API security best practices

Securing APIs

Traditional approaches can be beneficial to API observability
and monitoring, and they also are useful for some aspects of
security. However, a new approach is needed to protect APIs

throughout their life cycles.

This chapter covers the importance of architecture in API secu-
rity, and why a platform approach is needed to avoid the pitfalls of
one-off tools and controls. I also describe the groupings of capa-
bilities that are most critical for securing APIs throughout their
life cycles: continuous discovery, protection, and remediation.
This chapter also includes some API security best practices for all
organizations to consider.

Recognizing Why Architecture
Is Essential

The resulting gaps in API security posture that are left with tra-
ditional approaches have created the need for purpose-built API
security. API security can’t be addressed by a collection of splin-
tered tools stitched together by engineering teams and operated
haphazardly. This approach results in operational headaches,
scaling issues, and an increased likelihood of a security incident.
The following sections explain the importance of the architecture

32 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

of any API security solution and the core traits you should look for
in a solution.

Focusing on architecture
Any API security tooling you consider for your organization
should be built as a platform of capabilities. API security strategy
demands a full life cycle approach because security issues, vul-
nerabilities, logic flaws, and misconfigurations arise at different
stages of API design, development, delivery, and operation.

API security tooling should leverage Big Data to collect and store
large amounts of API telemetry, correlate API traffic, provide con-
text, and power fast attack detection and response. The tooling
should also use artificial intelligence/machine learning (AI/ML)
to continuously extract useful, actionable signals for IT teams.
Time-in-market is another key consideration because algorithms
improve over time through training and data sets are enriched by
the network effect, with more users and API calls.

Identifying core traits in an API
security platform
Any API security tooling you consider should be built with auto-
mation and cloud-scale capacity in mind. Realistically, that infers
a cloud-native design, making use of cloud-born technologies
such as auto-scaling infrastructure components, cloud storage,
and cloud analytics. This approach enables support for all your
organization’s environments as API adoption increases.

IN THEIR OWN WORDS
“Architecture is essential to effective API security. Only platforms with
the ability to capture and analyze all your API traffic can create the
context needed for full protection. You need a rich data engine and
time-proven AI and ML algorithms to identify APIs and their exposed
data, find and stop attackers, and distill the remediation details
needed to harden vulnerable APIs.”

— Curtis Simpson, CISO, Armis

CHAPTER 5 Securing APIs 33

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Key architecture attributes that API security tooling should exhibit
include the following:

»» Environment agnostic: API security tooling needs to
support modern and legacy infrastructures regardless of
where they’re hosted. The tooling should also be able to
integrate with network elements like load balancers,
API gateways, and web application firewalls (WAFs).

»» Independence from additional server agents and
proxies: API security tooling shouldn’t require additional
server agents or network proxies. The tooling should
avoid the use of client-side code to stop attacks including
CAPTCHAs or JavaScript in the traffic stream. These
approaches create issues with front-end performance
and are ineffective in direct API communication.

»» Cloud-based storage and analytics: API security tooling
should make use of cloud-based storage and data analytics,
often referred to as Big Data. This approach is the only way
to retain enough data to inform baselines of API behaviors
and consumption patterns, drive analysis engines, and
identify potential data loss, privacy impact, or other
security incident.

»» AI/ML-based analysis: API security tooling should use AI/ML
to analyze all the data and telemetry that are collected and
produce meaningful security signals. Machine-assisted
approaches are essential for powering detection and
enforcement capabilities, such as determining where best
to mitigate an API issue or what control is most appropriate.
Machine-assisted analysis also helps reduce high false
positive rates that are common in traditional approaches.

Ensure that API security tooling is designed to work in environ-
ments with encrypted transport. Some approaches suffer from
reduced visibility with traffic inspection.

Incorporating data classification
APIs are used frequently to exchange data that may be sensitive.
As a result, you want any API security tooling to identify any sen-
sitive data types in API parameters and payloads as well as tag API
endpoints appropriately so you’re aware of potential exposures.

34 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A range of personally identifiable information (PII) and other
data types are subject to regulation. As examples, sensitive data
includes protected health information (PHI) as defined by the
Health Insurance Portability and Accountability Act (HIPAA) and
private data includes information types defined by General Data
Protection Regulation (GDPR).

Failing to identify and protect sensitive data can result in penal-
ties from regulatory bodies, severe brand damage, or loss of cus-
tomers. API discovery can be useful for audits and prioritizing API
security activities.

Protecting APIs Continuously
Chapter 2 examines how mediating technologies like API gate-
ways can provide elements of API runtime protection. Used alone
though, these mediation mechanisms leave gaps in your API
security posture. Traditional runtime security approaches either
aren’t designed for the world of APIs, or they fail to provide
full API context. You need to seek API security capabilities that
can detect API attacks early and provide protection that adjusts
dynamically based on your changing API attack surface.

A common threat protection approach is to front-end API medi-
ation points with additional proxies such as next-generation
firewalls (NGFW) or WAFs. Such an approach adds latency and
provides minimal to no added protection beyond the message
inspection capabilities of most API gateways. Corresponding rules
aren’t designed for unique API business logic, and these mecha-
nisms can’t provide full context.

The following sections detail what detection and protection capa-
bilities you should seek. Consider both sides of this coin as you
select and implement any API protection.

Identifying the detection
capabilities you need
You need capabilities that can identify API attacks quickly and
early. WAFs and API gateways focus on transactions in isolation
rather than viewing the whole picture of a complete API sequence

CHAPTER 5 Securing APIs 35

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

to provide full context. API gateways, including those that exist
as components of API management and integration platforms are
primarily API mediators and access control enforcers that may
already be overloaded.

Schema-dependent API security tools fail at detecting certain
types of API attacks, such as broken object-level authorization
(BOLA) flaws. Limitations are inherent when restricting security
protection to API schema definitions at the expense of also exam-
ining traffic in runtime.

Some organizations may attempt to repurpose intrusion detection
systems (IDS), intrusion prevention systems (IPS), and NGFW for
API security, but these systems are even less suited for the task of
API attack detection because they sacrifice any application layer
or API focus for broad, multiprotocol attack detection. Detection
capabilities you need include the following:

»» Attacker correlation: API security tooling should aggregate
and correlate API traffic and associate it to attacker cam-
paigns where applicable. Tooling should correlate attack
behavior per source IP address, per user ID, and per
session ID.

»» Behavior analysis and anomaly detection: API security
tooling should programmatically parse API business logic
and behaviors to assess impacts to an organization’s API
security posture. Tooling should exhibit traits of user and
entity behavior analytics (UEBA) to detect a wide range of
API abuses and automated attacks where API consumption
patterns deviate from baselines.

»» Early attacker identification: API security tooling should
continuously detect API attacks early and quickly. Attackers
go through an early reconnaissance phase as they passively
and stealthily probe API targets. These passive analysis
techniques evade most detections because they typically
appear as legitimate traffic. API security tooling should
detect subtle variations in API consumption patterns that
result from automation scripts and reverse engineering
tools employed by attackers.

36 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Focusing on the protection
capabilities you need
Expanding on API threat protection capabilities beyond what is
afforded by traditional approaches is critical. Testing or detect-
ing issues in APIs isn’t enough. You need a more comprehensive
approach if you desire to stop API attacks before attackers can
exfiltrate data or do damage to your organization. Here are the
protection capabilities you need:

»» Stop attacks that exploit OWASP API Security Top 10
flaws. API security tooling should stop attackers that
attempt to exploit issues defined in the OWASP API Security
Top 10 (refer to Chapter 4 for more about this list). The list
includes exploits of BOLA flaws, BFLA flaws, broken authenti-
cation, excessive data exposure, lack of resource or rate
limiting, security misconfigurations, and injection flaws.

»» Block malicious requests while learning API logic. API
security tooling should block or mitigate API attacks while
learning the organization’s unique business logic. Some API
attacks can be detected and stopped regardless of how an
organization designs its APIs, including injection attacks and
excessive API consumption.

»» Stop credential stuffing and brute forcing attacks. API
security tooling should stop the automated attacks (see
Chapter 4) where the end goal for an attacker is account
takeover (ATO). ATO is a risk for any organization that
exposes an API where authentication and authorization
are required. Even in cases where additional authentication
factors are used, attackers combine techniques to overcome
strong access controls.

»» Stop application-layer denial of service (DoS) attacks.
API security tooling should stop application-layer DoS attacks.
DoS and distributed DoS (DDoS) are often viewed from the
lens of excessive traffic or request rates, or volumetric
attacks. The more nefarious and stealthy form of DoS is
application-layer DoS, or layer 7 DoS. Application-layer DoS
is more difficult to stop because of application and API
uniqueness. Ensure that the security tooling doesn’t stop at
layers 3 and 4 DoS. Tooling should also cover layer 7 DoS and
for APIs specifically.

CHAPTER 5 Securing APIs 37

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Traditional rate limiting and message filtering mechanisms in
API gateways or WAFs are too static, too operationally complex,
or not well-maintained by the vendor. Use static limits if you have
limited API consumption but seek dynamic limiting mechanisms
if your API consumers are numerous or traffic patterns are less
predictable.

Remediating APIs: Enhancing Capabilities
and Streamlining Workflow

DevOps and DevSecOps practices reinforce the notion of feed-
back loops. You want your tooling to be integrated and automated
in such a way that workflow is seamless. Workflow is typically
centered around git-based version control systems (VCS) and
continuous integration/continuous delivery (CI/CD) pipelines.
Security and nonsecurity teams should be able to quickly obtain
the information they need to act on and resolve issues.

Remediation workflow should be minimally disruptive to normal
workstreams and business activity. In practice, you can achieve
this by getting as much information and resolution capability into
the toolchains that are used as part of normal work.

The following sections call out remediation capabilities you need
and why adapting to response workflows is necessary.

Naming remediation
capabilities you need
Organizations frequently wrestle with common vulnerabili-
ties and exposures (CVE) IDs, often generated from vulnerabil-
ity scanning. However, design flaws, software weaknesses, and
business logic flaws don’t map neatly to CVE IDs. With respect to
API security, you need to seek remediation capabilities that can
check for a wide spectrum of API-related flaws, vulnerabilities,
and infrastructure misconfigurations. These remediation capa-
bilities should work continuously for the full life cycle of APIs in
development, build, and runtime phases.

38 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A security fix may not always be code level, because it may not be
technically possible to fix a problem in code, it may not be feasible
to produce a code fix in a timely manner, or it’s more practical to
mitigate through other infrastructure components. Here are API
remediation capabilities you need:

»» API vulnerability and weakness identification: API
security tooling should use a combination of techniques to
assess the security of all APIs in the organization. Tooling
should passively analyze API traffic that flows through
numerous points of enterprise architecture on- and off-
premises, and it should analyze API schema definitions
when available to identify areas of API weakness that
should be remediated by development teams, operations
teams, or both.

»» Remediation guidance tailored to personas: API security
tooling should provide remediation guidance focused on
code-level fixes for development perspectives as well as
infrastructure configurations for operations perspectives.
Issues should be mapped to the OWASP API Security Top 10
(refer to Chapter 4) where appropriate, but technical details
shouldn’t be written only for security audiences.

»» Integration with defect tracking systems: API security
tooling should integrate with external defect tracking systems
to support pre-existing security and development workflows
for remediation. Defect tracking may be handled in external
DevOps suites, IT services management (ITSM), or vulnerabil-
ity management (VM) platforms depending on the organiza-
tion’s IT and security programs.

»» Code repository and pipeline integration: API security
tooling should provide mechanisms to integrate with
development, build, and release systems. Integration may
be through VCS integration to statically analyze API code or
schema definitions. Integration may also be through CI/CD
integration to dynamically analyze APIs in runtime in
preproduction or production environments.

Adapting your incident response
processes for APIs
API attacks are inevitable, and your organization must deal with
threat actors on multiple fronts. Even though API protection is

CHAPTER 5 Securing APIs 39

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

key to defending your APIs in runtime, your organization’s ability
to respond in the event of an attack is just as critical. Not all API-
related risks are attack-oriented either, where dominant concerns
may include data exfiltration or scraping by an attacker. Your
incident response playbooks should encompass many unfore-
seen API events, including unintentional data exposure, privacy
impacts, and availability issues.

You need API-centric incident response capabilities that integrate
with the work streams and tooling of development and SecOps
teams. Data feeds into the organization’s security information
and event management (SIEM) are a given, though it should be
done intelligently to provide useful signals. Integration shouldn’t
be limited to a basic log feed or data dump. API security tooling
should intelligently prioritize events, provide actionable security
alerts, and support the work streams of a modern security opera-
tions center (SOC) and IT workforce.

Defining API Security Best Practices
The broad landscape of API design patterns and API consumer
types complicates security requirements for your organization.
The diversity of the API landscape makes arriving at a set of best
practices challenging. Your security best practices must be com-
prehensive and inclusive of many technology areas.

APIs are implemented, operated, or interacted with by many
roles within an organization including development, API prod-
uct teams, API operations teams, application security teams,
and security operations. As with DevOps practices, collaboration
is crucial for building and operating secure APIs. The following
sections detail a range of API security best practices you should
consider adopting.

API discovery and cataloging
An accurate API inventory is critical to many aspects of IT within
your organization. Compliance, risk, and privacy teams require
API inventory, particularly as they must answer to regulatory
bodies. Security teams also need API inventory so that they can
have a realistic view of their attack surface and risk posture to

40 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

help prioritize the wide range of API security activities that must
be accounted for. Here are the discovery best practices:

»» Discover APIs in lower environments and not just production.
Lower environments often have lax security and make for
primary attack targets.

»» Include API dependencies and third-party APIs in your API
catalog. Third-party APIs are part of the attack surface.

»» Tag and label APIs and microservices as a DevOps best
practice. Such processes also serve as enablers of many
other API life cycle activities.

Security testing
Traditional scanning technologies struggle with parsing custom-
developed code and business logic because design patterns and
coding practices vary per developer. Use traditional security
testing tools to verify certain elements of an API implementa-
tion, such as well-known misconfigurations, vulnerabilities, and
exploitable conditions, but you must operate these tools with
awareness of the limitations. Testing best practices include the
following:

»» Statically analyze your API code for well-defined exploitable
conditions in code as it’s committed to VCS, built, and
delivered in CI/CD pipelines, or both.

»» Check for known vulnerable third-party dependencies and
open-source componentry in your API code.

»» Dynamically analyze and fuzz deployed APIs to identify
exploitable conditions in the fully integrated system.

API mediation and architecture
API mediation provides for improved visibility, accelerated deliv-
ery, increased operational flexibility, and improved enforcement
capability. The latter is often used to enforce API access control.
An organization can commonly achieve mediation by deploying
API gateways and microgateways that function as reverse prox-
ies, forward proxies, or both. The following are mediation best
practices:

CHAPTER 5 Securing APIs 41

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Mediate your APIs to improve observability and monitoring
capabilities for inner and outer APIs.

»» Use mediation mechanisms like API gateways to enforce
access control, rate limiting, and message filtering.

»» Augment your mediation mechanisms with API security
tooling that can provide context and make the difference
between static and dynamic control.

Network security
Traditional network perimeters erode as organizations move
toward highly distributed APIs and cloud services. Infrastruc-
ture becomes more ephemeral, virtualized, and containerized.
Consequently, this evolution makes some traditional network
access control approaches ineffective. Modernized network secu-
rity begins to heavily intersect with identity and access manage-
ment (IAM), or “identity as the perimeter.” The following are
network security best practices:

»» Enable encrypted transport to protect the data your APIs
transmit over unprotected networks.

»» Use IP address allow and deny lists if you have small
numbers of API consumers, such as with partner or supplier
integration use cases.

»» Look to dynamic rate limiting for API deployments where
API consumers are too numerous or too unpredictable.

Data security
Appropriate techniques for securing data include masking,
tokenizing, or encrypting. Many data security efforts focus on
securing data at rest in a back-end system, such as database
encryption or field-level encryption. These encryption approaches
don’t protect your data in cases where attackers obtain a creden-
tial or authorized session because the data will be decrypted for
them when accessed through an API. Data security best practices
include the following:

»» Use encryption selectively and as mandated by regulation
due to operational complexity. Transport protection suffices
for most API use cases.

42 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Avoid sending too much data to API callers and relying on
the API client or front-end to filter data. Sensitive or private
data is always visible in traffic.

»» Adjust for modern threats like scraping or data inference
where encryption isn’t an effective mitigation.

Authentication and authorization
Authentication (authN) and authorization (authZ), and by
extension IAM, are foundational to all security domains, includ-
ing API security. IAM is used heavily for access control to func-
tionality and data. When implementing authN and authZ, you
must account for user identities as well as machine identi-
ties. Even though it’s possible to challenge a user for additional
authentication material in a session, this option isn’t available for
machine communication. AuthN and authZ best practices include
the following:

»» Continuously authenticate and authorize API consumers
throughout a session and based on behaviors, not just
initially during login.

»» Use modern authN and authZ protocols like OpenID Connect
(OIDC) and OAuth2.

»» Avoid using API keys as a sole means of authentication. API
keys are primarily version control and should be paired with
other authentication.

Runtime protection
Runtime protection, sometimes referred to as threat protection,
is often delivered through proxies like API gateways and WAFs.
These mechanisms rely on message filters and static signatures,
which can catch some types of attacks that follow well-defined
patterns but miss most forms of API abuse. Runtime protections
are useful for identifying misconfigurations in API infrastructure
as well as behavior anomalies like credential stuffing, brute forc-
ing, or scraping attempts by attackers. Runtime protection best
practices include the following:

CHAPTER 5 Securing APIs 43

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Enable threat protection features within your API gateways
and API management to mitigate risk of injection flaws like
JSON and XML injection.

»» Ensure that DoS and DDoS mitigation are part of your API
protection approach. If attackers can’t exploit or abuse an
API, they often revert to DoS techniques.

»» Augment traditional runtime controls with AI/ML and
behavior analysis engines to detect novel API attacks
where pre-built signatures leave gaps.

CHAPTER 6 Ten Things You Can Do Now to Secure APIs 45

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

IN THIS CHAPTER

»» Designating security leads and
forming a strategy

»» Protecting APIs and adapting
incident response

»» Starting and maintaining an API
inventory

Ten Things You Can
Do Now to Secure APIs

Not sure about what you can do to secure APIs in your orga-
nization? What follows is a list of ten high-priority items
you should focus on to identify and protect your APIs:

»» Identify API security leads. Start with your application
security team and identify API security leads to collaborate
on discovery, testing, protection, and incident response. Your
API security expertise may be scattered across development,
infrastructure, operations, and security roles. You may also
find that expertise is concentrated within API product teams.

»» Develop a comprehensive API security strategy. Treat
APIs like any other critical IT asset and build a plan that
addresses the entire API lifecycle, including design,
development, deployment, and management. Define
specific security standards for APIs to meet regulatory
requirements and industry best practices. Ensure your
API security strategy aligns with relevant regulations like
GDPR, HIPAA, and PCI DSS.

»» Establish an API inventory. Build an initial API inventory
and plan to maintain it as your API landscape evolves. Your
API inventory is more than in asset management databases

46 API Security For Dummies, Third Salt Security Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

or API management. You need discovery mechanisms to
identify API endpoints, gather metadata, and classify
potentially exposed data types.

»» Prioritize and classify APIs. To prioritize security efforts
and allocate resources effectively, categorize APIs based on
their risk level and sensitivity. Consider factors such as data
sensitivity, business criticality, and the potential impact
of a breach.

»» Implement secure development practices and integrate
security into the API development lifecycle. This includes
secure coding practices, code reviews, and CI/CD pipeline
security testing.

»» Deploy purpose-built, AI-enabled tools for runtime API
protection. These tools should provide advanced threat
detection capabilities, such as anomaly detection and
behavioral analysis. Integrate real-time threat intelligence
feeds into your runtime protection mechanisms. Ensure
comprehensive protection across all your APIs, including
those deployed on-premises, in the cloud, or hybrid
environments.

»» Adapt incident response for APIs. Augment your digital
forensics and incident response processes for the world of
APIs. API abuse and data exposures may not rank high on
the list initially, but successful API attacks have a massive
impact on organizations. Ensure that SecOps teams have
what they need to respond quickly and loop in appropriate
API expertise.

»» Define the API remediation process. Formalize your
remediation steps to help power feedback loops critical in
DevOps. Remediation often requires a mix of roles and can
also include third parties.

»» Embrace automation to streamline API security tasks.
Automate security testing, vulnerability scanning, and
incident response.

»» Promote collaboration and communication. Foster
collaboration between development, operations, and
security teams. Encourage communication and knowledge
sharing to ensure everyone knows API security risks and
best practices.

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book

	Chapter 1 Understanding APIs
	Defining APIs
	Eyeing the types of APIs
	Identifying API protocols

	Designing Modern Applications
	Decoupling front and back ends
	Altering the API picture

	Chapter 2 Laying the Foundations for API Security
	Documenting APIs
	Steering clear of traditional documentation approaches
	Working with API schema definitions

	Testing APIs
	Utilizing application security testing tools
	Using API schema validators

	Mediating 101: APIs and the Relevant Mechanisms
	Functioning as API mediation points
	Enforcing policy with API management

	Chapter 3 Governing Your API Posture
	Recognizing Key Components
	Identifying Best Practices
	Noting the Role of API Gateways and Mediation Tools
	Considering Other Key Points

	Chapter 4 Getting the Lowdown on API Attacks
	Understanding How API Attacks Differ from Application Attacks
	The front-end application is only a means to an end
	APIs underpin digital supply chains

	Taking a Closer Look at the OWASP API Security Top 10
	API1:2023 Broken object level authorization
	API2:2023 Broken authentication
	API3:2023 Broken object property level authorization
	API4:2023 Unrestricted resource consumption
	API5:2023 Broken function level authorization
	API6:2023 Unrestricted access to sensitive business flows
	API7:2023 Server-side request forgery
	API8:2023 Security misconfigurations
	API9:2023 Improper inventory management
	API10:2023 Insufficient logging and monitoring

	Recognizing Automated Attack Patterns
	Brute forcing, credential stuffing, and account takeover, oh my!
	The plague of scraping

	Chapter 5 Securing APIs
	Recognizing Why Architecture Is Essential
	Focusing on architecture
	Identifying core traits in an API security platform
	Incorporating data classification

	Protecting APIs Continuously
	Identifying the detection capabilities you need
	Focusing on the protection capabilities you need

	Remediating APIs: Enhancing Capabilities and Streamlining Workflow
	Naming remediation capabilities you need
	Adapting your incident response processes for APIs

	Defining API Security Best Practices
	API discovery and cataloging
	Security testing
	API mediation and architecture
	Network security
	Data security
	Authentication and authorization
	Runtime protection

	Chapter 6 Ten Things You Can Do Now to Secure APIs
	EULA

API Security

